3.534 \(\int \frac{\cot (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\)

Optimal. Leaf size=116 \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}} \]

[Out]

(-2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/(
Sqrt[a - I*b]*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/(Sqrt[a + I*b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.264338, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3574, 3539, 3537, 63, 208, 3634} \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(-2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/(
Sqrt[a - I*b]*d) + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/(Sqrt[a + I*b]*d)

Rule 3574

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/
(c^2 + d^2), Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x], x] + Dist[d^2/(c^2 + d^2), Int[((a + b*Tan[e
 + f*x])^m*(1 + Tan[e + f*x]^2))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{\cot (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx &=-\int \frac{\tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\left (\frac{1}{2} i \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\right )+\frac{1}{2} i \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{i \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{\sqrt{a-i b} d}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{\sqrt{a+i b} d}\\ \end{align*}

Mathematica [A]  time = 0.12216, size = 111, normalized size = 0.96 \[ \frac{-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{\sqrt{a-i b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{\sqrt{a+i b}}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((-2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/Sqrt
[a - I*b] + ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/Sqrt[a + I*b])/d

________________________________________________________________________________________

Maple [C]  time = 0.726, size = 20194, normalized size = 174.1 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 9.88069, size = 10059, normalized size = 86.72 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(2)*(a^3 + a*b^2)*d^5*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^
2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4)*arctan(-((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a
^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3 + a*b^2)*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^
4)) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4))
 + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b
^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*s
qrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 -
 b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d
^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4
)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2
/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2
*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4))/b^2) + 4*sqrt(2)*(a^3 + a*b^2)*d^5*s
qrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1
/((a^2 + b^2)*d^4))^(3/4)*arctan(((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/(
(a^2 + b^2)*d^4)) + (a^3 + a*b^2)*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*
b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(
b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a
^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c)
)/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/
4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 -
 b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b
^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqr
t((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b
^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4))/b^2) + sqrt(2)*(a^2*d^3*sqrt(1/((a^2 + b^2)*d^4)) + a*d)*sqrt(-((a^3 + a
*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4)*log(((a^2 + b^2)*d^2*sqrt(1/
((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*
x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)
) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*(a^
2*d^3*sqrt(1/((a^2 + b^2)*d^4)) + a*d)*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1
/((a^2 + b^2)*d^4))^(1/4)*log(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d
^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x +
 c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(
d*x + c) + b*sin(d*x + c))/cos(d*x + c)) + 2*sqrt(a)*log(-(8*a*b*cos(d*x + c)*sin(d*x + c) + (8*a^2 - b^2)*cos
(d*x + c)^2 + b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c)*sin(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b*sin(
d*x + c))/cos(d*x + c)))/(cos(d*x + c)^2 - 1)))/(a*d), 1/4*(4*sqrt(2)*(a^3 + a*b^2)*d^5*sqrt(-((a^3 + a*b^2)*d
^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(
3/4)*arctan(-((a^4 + 2*a^2*b^2 + b^4)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) +
(a^3 + a*b^2)*d^2*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((
a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^
2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d^3*sqrt(1
/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt
(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c)
+ b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2
+ b^2)*d^4))^(3/4) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a
^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) +
b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 +
b^2)*d^4))^(3/4))/b^2) + 4*sqrt(2)*(a^3 + a*b^2)*d^5*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2
- b^2)/b^2)*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*(1/((a^2 + b^2)*d^4))^(3/4)*arctan(((a^4 + 2*a^2*b^2 + b^4
)*d^4*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^3 + a*b^2)*d^2*sqrt(b^2/((a^4 + 2
*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^5 + 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/
((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 + b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^
2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a
*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 +
b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt
(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4) - sqrt(2)*((a^5 +
 2*a^3*b^2 + a*b^4)*d^7*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt(1/((a^2 + b^2)*d^4)) + (a^4 + 2*a^2*b^2 +
 b^4)*d^5*sqrt(b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-
((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(3/4))/b^2) + sqrt(2)*(a^
2*d^3*sqrt(1/((a^2 + b^2)*d^4)) + a*d)*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1
/((a^2 + b^2)*d^4))^(1/4)*log(((a^2 + b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((a^2 + b^2)*d
^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x +
 c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(
d*x + c) + b*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*(a^2*d^3*sqrt(1/((a^2 + b^2)*d^4)) + a*d)*sqrt(-((a^3 + a*b
^2)*d^2*sqrt(1/((a^2 + b^2)*d^4)) - a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4)*log(((a^2 + b^2)*d^2*sqrt(1/((
a^2 + b^2)*d^4))*cos(d*x + c) - sqrt(2)*((a^2 + b^2)*d^3*sqrt(1/((a^2 + b^2)*d^4))*cos(d*x + c) + a*d*cos(d*x
+ c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-((a^3 + a*b^2)*d^2*sqrt(1/((a^2 + b^2)*d^4))
- a^2 - b^2)/b^2)*(1/((a^2 + b^2)*d^4))^(1/4) + a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)) + 8*sqrt(-a)*ar
ctan(sqrt(-a)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))/a))/(a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (c + d x \right )}}{\sqrt{a + b \tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)/sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (d x + c\right )}{\sqrt{b \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)/sqrt(b*tan(d*x + c) + a), x)